ECNU at SemEval-2016 Task 5: Extracting Effective Features from Relevant Fragments in Sentence for Aspect-Based Sentiment Analysis in Reviews
نویسندگان
چکیده
This paper describes our systems submitted to the Sentence-level and Text-level AspectBased Sentiment Analysis (ABSA) task (i.e., Task 5) in SemEval-2016. The task involves two phases, namely, Aspect Detection phase and Sentiment Polarity Classification phase. We participated in the second phase of both subtasks in laptop and restaurant domains, which focuses on the sentiment analysis based on the given aspect. In this task, we extracted four types of features (i.e., Sentiment Lexicon Features, Linguistic Features, Topic Model Features and Word2vec Feature) from certain fragments related to aspect rather than the whole sentence. Then the proposed features are fed into supervised classifiers for sentiment analysis. Our submissions rank above average.
منابع مشابه
ECNU: Extracting Effective Features from Multiple Sequential Sentences for Target-dependent Sentiment Analysis in Reviews
This paper describes our systems submitted to the target-dependent sentiment polarity classification subtask in aspect based sentiment analysis (ABSA) task (i.e., Task 12) in SemEval 2015. To settle this problem, we extracted several effective features from three sequential sentences, including sentiment lexicon, linguistic and domain specific features. Then we employed these features to constr...
متن کاملMayAnd at SemEval-2016 Task 5: Syntactic and word2vec-based approach to aspect-based polarity detection in Russian
This paper describes aspect-based polarity detection system for Russian, used in aspectbased sentiment analysis task (ABSA) of SemEval-2016 (Task 5, subtask 1, slot 3). The system consists of two independent classifiers: for opinion target expressions and for implicit opinion target mentions. We introduce a set of standard unigram features together with more sophisticated ones: based on sentenc...
متن کاملIIT-TUDA at SemEval-2016 Task 5: Beyond Sentiment Lexicon: Combining Domain Dependency and Distributional Semantics Features for Aspect Based Sentiment Analysis
This paper reports the IIT-TUDA participation in the SemEval 2016 shared Task 5 of Aspect Based Sentiment Analysis (ABSA) for subtask 1. We describe our system incorporating domain dependency graph features, distributional thesaurus and unsupervised lexical induction using an unlabeled external corpus for aspect based sentiment analysis. Overall, we submitted 29 runs, covering 7 languages and 4...
متن کاملECNU: A Combination Method and Multiple Features for Aspect Extraction and Sentiment Polarity Classification
This paper reports our submissions to the four subtasks of Aspect Based Sentiment Analysis (ABSA) task (i.e., task 4) in SemEval 2014 including aspect term extraction and aspect sentiment polarity classification (Aspect-level tasks), aspect category detection and aspect category sentiment polarity classification (Categorylevel tasks). For aspect term extraction, we present three methods, i.e., ...
متن کاملNLANGP at SemEval-2016 Task 5: Improving Aspect Based Sentiment Analysis using Neural Network Features
This paper describes our system submitted to Aspect Based Sentiment Analysis Task 5 of SemEval-2016. Our system consists of two components: binary classifiers trained using single layer feedforward network for aspect category classification (Slot 1), and sequential labeling classifiers for opinion target extraction (Slot 2). Besides extracting a variety of lexicon features, syntactic features, ...
متن کامل